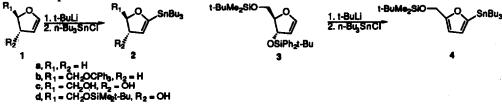
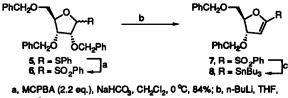
Preparation of 1-(Tri-n-Butylstannyl) Furanoid Glycals and Their Use in Palladium-Mediated Coupling Reactions


Han-Cheng Zhang, Mohamed Brakta and G. Doyle Daves, Jr.*

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12180


Key Words: stannylated furanoid glycals, lithioglycals, palladium-mediated coupling

Abstract: 1-(Tri-n-butylstannyl)furanoid glycals have been prepared for the first time by lithiation of the corresponding 3-O-unsubstituted glycals followed by reaction with tri-n-butylstannyl chloride. Furanoid glycals bearing an alkoxy (silyloxy) group at C-3 undergo elimination and furan formation. A 3-O-benzyl-1-(tri-n-butylstannyl)furanoid glycal was prepared from the 1phenylsulfonyl furanoid glycal using tri-n-butylstannyl/dydride and AIBN. Stannylated furanoid glycals and iodoaglycon derivatives underwent palladium-mediated coupling to yield the corresponding 1-substituted furanoid glycals in good to excellent yields.

We report the first preparation of 1-(tri-n-butylstannyl)furanoid glycals and illustrate their synthetic utility by palladium-mediated coupling reactions with aryl, nitrogen heterocyclic and anthracyclic iodides for Cglycoside syntheses.¹ Similar palladium-mediated coupling reactions of 1-(tri-n-butylstannyl)pyranoid glycals^{2,3} have been reported.⁴⁻⁹

Tri-n-butyl derivative 2a, formed by lithiation of 2,3-dihydrofuran (1a) and reaction with tri-nbutylstannyl chloride is known.¹⁰ Using this procedure, the 2,3-dideoxyfuranoid glycal (1b), prepared in two steps from S(+)- γ -trityloxymethyl- γ -butyrolactone,¹¹ was converted to the synthetically versatile, chiral 1stannyl-3-deoxy glycal 2b. Use of this procedure for tri-n-butylstannylation of 3-substituted hydroxy glycals, e. g. 3¹² failed. Unlike pyranoid glycals^{2,3} furanoid glycals, in the presence of t-butyllithium, suffer elimination of the 3-oxy substituent to yield the corresponding furan or, if tri-n-butylstannyl chloride is added, the stannylated furan, e. g. 4. However, by use of the 3-O-unprotected glycals $1c^{13}$ and $1d^{13}$ in which formation of a lithium alkoxide inhibits the elimination reaction, we succeeded in preparing stannylated furanoid glycals 2c and 2d bearing 3-hydroxy substituents. The resistance of 1c to base-catalyzed elimination was established when introduction of deutero methanol following treatment with t-butyllithium produced only the 1deuteroglycal. Following formation of the trilithio derivative of 1c, addition of tri-n-butylstannyl chloride produced the stannylated glycal 2c together with the corresponding stannylated furan in ratios varying with the rate of addition. Slow addition led to a 3:1 ratio of 2c and the stannylated furan; presumably the furan arises from a 3-O-(tri-n-butylstannyl) intermediate. 1d yielded 2d (63%) together with a bis-tri-n-butylstannylated product formed by lithiation of a silyl methyl group;³ in this case, no furan was observed. We succeeded in preparing stannylated 3-O-benzyl furanoid glycal 8 by a route previously employed for preparation of stannylated pyranoid glycals.¹⁴ Phenylthioglycoside 5¹⁵ was oxidized to the corresponding sulfone (6) using *m*-chloro perbenzoic acid (MCPBA). Treatment of 6 with n-butyllithium resulted in elimination of the 2-benzyloxy substituent and formation of the unsaturated sulfone 7; replacement of the sulfonyl group with tri-n-butylstannyl was accomplished using tri-n-butylstannylhydride in the presence of 2,2'-azobis(2-methylpropionitrile) (AIBN). We were unable to accomplish this latter step in yields better than 40%; invariably the corresponding stannylated furan and 1,4-anhydro-2-deoxy-3,5-bis-O-benzyl-D-erythro-pent-1-enitol, the glycal formed by replacement of the sulfonyl group by hydrogen, were also formed.

-78 °C, 90%; c, n-Bu₃SnH (2.5 eq.), AIBN, toluene, reflux, 40%

served to characterize the 1-(tri-n-butylstannyl)furanoid glycals formed. Since the stannylated glycals are labile and often difficult to purify,¹⁶ we found it generally convenient to utilize them without purification for palladium-mediated coupling reactions with iodoaglycon derivatives 9,¹⁷ 10,¹⁸ 11, 12¹⁹ and 13.²⁰ Results obtained for these coupling reactions, which demonstrate impressive generality, are summarized in Table 1.

In a typical procedure glycal 1d in tetrahydrofuran (THF) at -78 °C was treated with 3.5 equivalents of tbutyllithium followed by warming to 0 °C for 15 minutes. Then the reaction mixture was recooled to -78 °C and 3 equivalents of tri-n-butylstannyl chloride was added slowly. The reaction mixture was monitored by tlc; when the reaction was complete, water was added and the stannylated glycal was extracted into ether and dried over Na₂SO₄. The solvent was removed and the stannylated furanoid glycal 2d was separated by flash chromatography using ether-hexane-triethylamine (1 : 3 : 0.06). A mixture of 2d (1.3 eq.), iodaglycon 13 (1.0 eq.), triethylamine (2.0 eq.), triphenylarsine²¹ (0.2 eq.) and palladium(II) acetate (0.1 eq.) in dried CH₃CN-THF (2:1) was stirred under nitrogen at 40 °C for 16 hours. The coupled product (Table 1, entry 8) was separated by flash chromatography using ethyl acetate-hexane-triethylamine (3 : 1 : 0.1).

Palladium-mediated coupling reactions of stannylated dihydrofuran derivative $2a^{10}$ with vinyl and aryl halides have been reported.²² We found this stannylated derivative to undergo facile palladium-mediated coupling with even complex nitrogen heterocyclic iodo derivatives¹⁸ under mild conditions (Table 1, entries 1, 2). Stannylated furanoid glycals 2b (entries 3-6), 2c (entries 7), 2d (entry 8) and 8 (entry 9) were coupled equally effectively. Typically, the of the coupling reaction mixture indicated the formation of a single product; The somewhat modest yields isolated in some instance (e. g. entries 3, 7) are a result of difficulties experienced in purifying these arylated enol ethers which undergo elimination to furans and facile double bond hydration, particularly when the aryl group is relatively electron rich.

		$\frac{Arl}{0.1 \text{ eq. }Pd(OAc_2)}$			
entry	stannyl derivative	Ari	solvent temp. (°C)	time (h)	% yield ^e of aryiglycal
1	2a		CH₃CN 40	8	65
2	2a		CH3CN 25	8	85
3	2b ^b		CH ₃ CN -THF 40 2:1	. 8	. 59
4	26 ⁶	OiPr	CH ₃ CN -THF 40 2:1	້ 10	78
5	2b ^b	12 Ö 9	CH₃CN -THF 40 2:1	10	66
6	26 ⁶	10	CH3CN -THF 25 2:1	12	82
7	2c ^b		CH ₃ CN 40	14	54
8	2d		CH₃CN - THF 40 2:1	16	81
9	8	9 chromatography: based o	CH ₃ CN 60	0.5	

Table 1. Palladium-Mediated Coupling of Stannylated Furanoid Glycals with Iodoaglycon Derivatives

^a isolated yields following chromatography; based on Arl ^bUsed without purification

It is noteworthy that iodopyrazoio[4,3-d]pyrimidine derivative 10¹⁸ undergoes palladium-mediated coupling with stannyl derivatives 2a and 2b (entries 2 and 6) more facilely than iodopyrimidine derivative 9 (entries 1 and 5). This contrasts with the mechanistically different¹ palladium-mediated coupling reactions of these iododerivatives with glycals in which 9 is more reactive than 10.¹⁸ Presumably these differences in reactivity are owing to the relative electron densities of the heterocyclic ring systems.

The formation and pailadium-mediated coupling of stannylated furanoid glycals with iodo aryl and heterocyclic derivatives provides a route to furanosyl C-glycosides which is complementary to that developed in our laboratory which involves pailadium-mediated coupling of glycals with halo, mercurial or stannylated²³ derivatives of aryl and hererocyclic aglycones.¹

Acknowledgment

We thank the National Institutes of Health for financial support.

References and Notes

- 1. Daves, G. D., Jr. Acc. Chem. Res. 1990, 23, 201; Hacksell, U.; Daves, G. D., Jr. Prog. Med. Chem. 1985, 22, 1.
- 2. Hanessian, S.; Martin, M; Desai, R. C. J. Chem. Soc., Chem. Commun. 1986, 926.
- 3. Friesen, R. W.; Sturino, C. F.; Daljeet, A. K.; Kolaczewska, A. J. Org. Chem. 1991, 56, 1944.
- 4. Friesen, R. W.; Sturino, C. F. J. Org. Chem. 1990, 55, 2572.
- 5. Friesen, R. W.; Sturino, C. F. J. Org. Chem. 1990, 55, 5808.
- 6. Dubois, E.; Beau, J.-M. J. Chem. Soc., Chem. Commun. 1990, 1191.
- 7. Friesen, R. W.; Daljeet, A. K. Tetrahedron Lett. 1990, 31, 6133.
- 8. Tius, M. A.; Gu, X.; Gomez-Galeno, J. J. Am. Chem. Soc. 1990, 112, 8188.
- 9. Tius, M. A.; Gomez-Galeno, J.; Gu, X.; Zaidi, J. H. J. Am. Chem. Soc. 1991, 113, 5775.
- 10. Boeckman, R. K.; Bruza, K. J. Tetrahedron 1981, 37, 3997.
- 11. Takle, A; Kocienski, P. Tetrahedron 1990, 46, 4503.
- 12. Farr, R. N.; Daves, G. D., Jr. J. Carbohydr. Chem. 1990, 9, 653.
- 13. Cheng, J. C.-Y.; Hacksell, U.; Daves, G. D., Jr. J. Org. Chem. 1985, 50, 2778.
- 14. Lesimple, P.; Beau, J.-M.; Jaurand, G.; Sinay, P. Tetrahedron Lett. 1986, 27, 6201.
- 15. Kametani, T.; Kawamura, K.; Honda, T. J. Am. Chem. Soc. 1987, 109, 3010.
- 16. Farina, V. J. Org. Chem. 1991, 56, 4985.
- 17. Prystas, M.; Sorm, F. Collect. Czech. Chem. Commun. 1964, 29, 121.
- 18. Zhang, H.-C.; Daves, G. D., Jr. J. Org. Chem. 1992, 57, 4690.
- 19. Kwok, D.-I.; Farr, R. N.; Daves, G. D., Jr. J. Org. Chem. 1991, 56, 3711.
- 20. Brakta, M; Daves, G. D., Jr., unpublished results.
- 21. Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585.
- 22. MacLeod, D.; Moorcroft, D.; Quayle, P.; Dorrity, M. R.; Malone, J. F.; Davies, G. M. Tetrahedron Lett. 1990, 31, 6077.
- 23. Outten, R. A.; Daves, G. D., Jr. J. Org. Chem. 1989, 54, 29.

(Received in USA 21 July 1992; accepted 4 November 1992)